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Canonical variables are obtained for the equations of the potential motion of an ideal fluid in arbitra~ eurvilinear Euler and 
Lagrang¢ systems of coordinates. The boundary conditions are written in Hamiltonian form with a Hamiltonian equal to the 
total energy of the fluid.'The main purpose of this paper is to develop a Hamiltonian approach to the investigation of non-linear 
wave processes in vohunes of an ideal fluid of non-trivial geometrical shape. 

Evolutional wave problems are usually reduced to finding and analysing the solutions of"truncated" shallow-water, 
Korteweg-de Vries equations, the non-linear Schrtdinger equation, etc. [ 1-4]. Methods of solving these equations 
are well developed [1-5]. The properties of the solutions obtained depend very much on the dispersion relation 
and the coefficients of the non-linear terms. 

Finding the coefficients of the non-linear terms of the "truncated" equations involves carrying out lengthy 
asymptotic expansions in theiuitial system of equations [2, 4, 6, 7]. To simplify the expansions, the Luke variational 
principle [7] or the Hamiltonian approach [3, 7-9] have been used. When using these methods the asymptotic 
expansions are only carried out in a single functional (the Lagrangian or Hamiltonian), while the "truncated" 
equations are autome~tically found from the variational principle, which considerably reduces the amount of algebraic 
calculations required. 

Lagrange's equations [11, 12] are used to investigate the potential motions of a fluid with a deformable boundary. 
One can choose the normal displacements of the boundary as the generalized coordinates. The generalized forces 
are then the pressun~ forces acting on the boundary of the fluid. This approach is equivalent to the Hnmiltonian 
formalism in a Lagrangian system of coordinates considered in this paper. 

Canonical variabk~ have been obtained in [8] for the equations of potential motions of an infinitely deep layer 
of an ideal fluid with a free surface, written in a Cartesian Euler system of coordinates. Canonical variables were 
obtained in [9] for ate potential motions of a multilayer ideal fluid in a Cartesian system of coordinates and the 
corresponding Hamiltonian was constructed. 

1. The calculation of  the vortex-free motion of  a volume V of an ideal incompressible fluid reduces 
to solving Laplace's equation with boundary conditions which have the following form in invariant 
geometrical notation 

giJv i Oq~ -o ,  xi~.v, i - 1 , 2 , 3  (1.1) 
Ox j 

dI ' f /d t  = O, F + pf /p  = O, x i E OV/ (1.2) 

d I " l d t  = O, x ~ ~ OV r (1.3) 

d O .. Oq~ c9 O~ 1 ij dcp Ocp 
_ _ . _ _ + g t j  , f . m +  ~ -. + U  
dt Ot Ox t Ox j '  Ot -2g Ox' Ox j 

Here  q~x i, t)  is t h e  velocity potential in an arbitrary curvilinear Euler system of coo. rd ina tesx i ,  g ij is t he  
metric tensor of Euclidean .space, Vi is the symbol of  covariant differentiation, U(x' ,  t)  is t he  potential of  

f 1 the external mass forces, p f (x i ~ 0V,  t) "s the external pressure acting on the free surface of  the fluid, 
~V f p = const is the density of  the fluid. We will assume that the boundary ~Vof  the volume Vconsists 
of two parts: ~ V  f and ~V ~. The surface ~ V  f is free and is described by the equation Ff(x  i, t)  = O, and  
the surface ~V' is a solid movable wall and its motion is defined by the equation Fr(x  ~, t)  = O. 

The solution of  Laplace's equation in a volume V is uniquely defined if we know the values of the 
potential O f at the boundary ~f / f  and the function I "f, and condition (1.3) is satisfied. Hence, the total 
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energy of the fluid E, the potential q~ and the pressure P are funetionals of q~f and F ( The boundary 
conditions (1.2) determine the evolution of the boundary value of the potential 9 land  the form of the 
free boundary. The pressure in the whole volume of the fluid is given, after finding ~, by the formula 

p = -oE (1.4) 

We will assume that the Euler system of coordinates can be chosen so that the equality I f" = hf¢(x 1, 
X 2, t) --X 3 is satisfied in a finite time, the coordinate lines x 3 have no tangents to the surface av, and the 
range of variation ofx 1 and x 2 is independent of time. Further, obtain the canonical variables we will 
use coordinate transformations which do not change the direction of the basis vector e3, tangential to 
the coordinate line x 3. 

2. The total energy E is equal to the sum of the kinetic and potential energies of the fluid and is given 
by the formula 

! ..a9 acP dV, H=S UdV E = T + H ,  T= gtl ax lax j v 

The change in E during the motion is equal to the work of the pressure forces on the surfaces OV f 
and ~V' 

~E =-- I P f  ~hf  d$ ! ~hrd$ 
av/ P IVrfl  a rpr~plVrq (2.1) 

" OF/" a r f ' r  a t : , '  =ah :,~ 
Ivrf , r l  2=g'j ax ~ ax j , 

(if" is the pressure of the fluid on the solid wall). Note that the quantitypt in (1.5) is specified, and pr 
is found from (1.4). 

We will calculate 5E assuming that ~h y = 8h r on the boundary line between av/and a v  r. The variation 
of the values OI'(x t, x 2, t) of the arbitrary function O(x i, t) on aV is related to its variation at a fixed 
point of space as follows: 

acl~f,r = (affP + V3Oah) f,r, ¢]d,r = ffp(xi E aVf, r) 

Using the Gauss-Ostrogradskii theorem and the formula for integration by parts, we obtain 

aE = - ½ ( g  + I~ + 1~ + i;)+ I [Uah4~jfax'd~ 2 + f [U~h4~jr~'~  ~ 
S f S r 

r Iv ( ar:'r a,p ) .r ~ f a~, , , ~  
Ifr" = fl.rL 3[, ~ ax]~p giJ'4-g-(1-aix)[~xi ~ x j  g "qg )+ 

o : o~ ,j ~ orf'r ]]f.r 
+~X3 [ ( ~ x j  g "~g) OX i J] ~hf'rdxIdx2 

"l~'r " s(r[g~J~)(q)'~xi) Orf'r 0 7  ~/g J dxld~2 

The regions ~ i  are the projections of the surfaces aV f'" onto the plane (x I, x=). 
We wil l convert the sum I {  + I~ assuming that i~  satisfie~ Lapla~'s equation 

v \ ax ox I v 

f [ 0 ~ a r  o r - -  1 O~ aF/gij.~&p dx,dx 2 +21 [ ~'i'xi a-~-g ~/go~] dx'dt 2 = 2[/ ~x iax  J s' 

(2.2) 
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Differentiating under the sign of the integrals Ir f" we obtain 

]f,r sff,r ~Xj (_~ i  ~g.l. Cp OX~ .gO ~hf,rdxldx 2 

We make the fi)llowing change of coordinates 

x 3 
y l l x l ,  y 2 . x 2 ,  y 3 - f  ~ d x  3, h - h ( x l , x 2 ) ,  ( x l , x 2 ) ~ S  f'r 

h 

(h is an arbitrary function o fx  1, xZ), without changing the direction of  the vectors of the basis e3. The 
Jacobian of  this change is ~/g. Hence, the quantity 4g in the new system of coordinates is equal to unity, 
and we can write 

• . 6E I OIp Ocp .. O~ OF f Otp .. ~E O~. OF. f g~j, . . . .  gq ~ g,j 
~)1~ f a f f i  Oy t Oy f b11 2 c)y i Oy ~ Oy' Oy j Oy 3 

h f 
yi ~ a V  f ,  1"]- f ~ d x  3 

h 

The variation (89) r = (O9/~t)r& depends functionally on &pf, 8h f. Hence, it follows from (1.4) that 
the sum of the integrals over the surface S" in (2.3) is equal to 

8hrds 
_ f  pr 

~v ~ plVrrl  

Hence,  we have the following assertion. 

Assert/on. The evolution of  the free boundary of  a volume of ideal fluid, defined by the equation x 3 = 
v f h(xl, x 2 t), and the alue of the velo,~..'ty potential 9 on it are determined in an arbitrary curvilinear Euier 

system of coordinate with metr icg ~j by the Hamilton canonical equations 

011 8H 0~ f 6H 
. . . .  (2.3) - - m f f i  

Ot 8(~ f ) ' dt br I 

and the Hamiltonian is defined by the formula 

H ffi E + f p: hfds Oh r r ds ( 2 . 4 )  
av ! plVFfl  / r - ' ~ t P  IVFrl 

When calculating the Hamiltonian it is assumed that the value of  9 over the whole volume of motion 
Vis also related to, the canonical variable (pfin the same way as the solution of  Laplace's equation (1.1) 
with boundary condition (1.3) is related to the boundary value of  the potential 9 on 0V f. 

The canonical variable 11 has a clear geometrical meaning. Assuming h = hf(x 1, x 2, t = 0), we find 
that the quantity ~q(x 1, x 2, t )d r ld~  is equal to the elementary volume 0Vtraversed by an elementary 
area lying on the ti'ee surface of the fluid in the direction of  the x ~ axis in a time t. 

As an example we will consider the canonical variables for motions which can be conveniently investigated in 
cylindrical or spherical systems of coordinates. In the first case we have 

xl=r,  x2=~, x3=z, g l l= l ,  .g22=r, g33=1 

gij ~0  when i=j ,  ~-g=r 

We will assume that the free surface of the liquid OV f is described by the equation r ffi hf(¢~, z ,  t). In this case the 
canonical variables are the values of the potential tp f and OV f and 
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h f 
rift f r d r f 2 f h f  )2 

0 

For a spherical system of coordinates we obtain 

x ! = r, x 2 = 0 (polar angle), x 3 = k (length) 

g l l= l ,  g22=r, g33=r2sin20, gi]=O for i~ j ,  Vr-g=r 2 

If the flee surface aVfof the fluid is described by the equation r = hf(O, ~, t), the canonical variables will be 9 f 
and 

h.f I 
,q = f r2dr = ~ ( h f )  3 

0 J 

The approach considered can be extended to the investigation of the motion of fluid volumes taking 
into account non-inertial and non-dissipative surface phenomena on the boundary a v  f for which the 
connection between the surface energy W and the form of the surface aV f is found from the equation 
-Pf + t/dd = 6W/Sq, where ~ is the fluid pressure in the region of its unknown surface. In this case the 
Hamiltonian is equal to the sum of (2.5) and W. The simplest example is the Hamiltonian formalism 
for potential motions in a fluid layer under an elastic plate [13]. 

3. We will consider the Lagrangian approach to investigate the potential motions of an ideal fluid.. We 
will assume that at the initial instant of time t = 0, the coordinate axes of the Lagrangian system ~', i = 
1, 2, 3 coincide with the axes x i of the Euler system. Each fluid particle will then have its Lagrangian 
coordinates gi and the displace.ment..vector ui(~, ~2, .~.3, t). For vortex-free motions the components of the 
velocity of the fluid particles ~/= ~O9/a~ *, where ~1 is the metric tensor of the Lagrangian system when 
t = 0 [14]. 

We will choose the Euler system of e o o r d i n a t e s x  i in such a way that its basis vectors at po'.mts traversed 
by the free surface of the fluid coincide with the basis vectors of the Lagrangian system ~' at the same 
points. In this case we have for the canonical variable 

I 

'1 = f "~rg 1'3dr (3.1) 
t~j 

Here g is the determinant of the metric tensor g/j(~l, ~2, ~3, t) of the Lagrangian system on the free 
surface of the fluid. The quantity rld~ld~ 2 is an elementary volume traversed by the fluid particles lying 
on its free surface in a time t. 

The Hamiltonian equations in Lagrangian variables have the form (2.4), where ~ is defined by (3.1). 
The Hamiltonian is determined by the expressions 

o au 3 _r ~d~l~2 

S f S r 

e=r+n, r=±f o..a  n=I 
2 v g~ a~ i 3~ j v 

The Lagrangian approach can be conveniently used when the regions S f¢ in the Euler system of 
coordinates vary during the motion. 

It was shown in [11, 12] that one can use the Lagrange equations to investigate the potential motions 
of an ideal fluid in the potential field of external forces, where one chooses as the generalized coordinates 
the normal displacements of the boundary of the fluid &n, and the Lagrange function L is equal to the 
difference between the kinetic and potential energy of the fluid. It can be seen that the equation 5rl = 

&n is satisfied. Hence, the Hamiltonian approach considered here is equivalent to the Lagrangian 
approach and the function ~pf = 5L/Sq is the generalized momentum. 

4. To investigate the system of equations (2.4) when studying a large class of special motions 
when one of the Euler spatial variables varies over a limited range (a, b) and the functions (rl,, q/) 
Lz(a, b), it is best to use orthogonal transformations with respect to this variable with weight ~/g. For 
example 



A Hamiltonian approach to the potential motions of an ideal fluid 97 

I~(xl,x2,t)= ~ l~m(xl,t)fm(X2), tOf(xl,x2,t)= ~ tOra(Xl,t)fra(X 2) (4.1) 
m=O m=O 

b 

I fmfn~dx2=Sn~n 
a 

In (4.1) the range (a, b) is the range of variation of the variable x 2 during the motion. 
Substituting (4..1) into the expression for the variation of the Hamiltonian and integrating we 

obtain 

~ m  5H OtOm 8H 
Ot &Pm Ot 8rim (4.2) 

Henceforth we will use a system of coordinates where ~/g = 1. If we choose fimetions of a trigonometric 
series in complex form as the orthogonal system, we have 

~ q m  = 8 H  0tO m = -  8 / /  ( 4 . 3 )  

The asterisk denotes complex conjugation and m is the number of the harmonic. 
When investigating localized motions in unbounded regions when x 2 ~ (--**, - )  it is best to use a 

Fourier integral t~ransformation with respect to x 2. In this case, we obtain for the Fourier transforms 
F~ and F~ of the functions rl and tOf 

OF n 8n OF~_ 8H (4.4) 
O, = ~ t ~ '  0t 8F~ 

Equations of the form (4.3) were used in [15, 16] when investigating resonance excitation of periodic internal 
and surface waves in a fluid layer by a variable pressure on its surface. In this ease the steady forced solutions 
correspond to extremal points of the Hamiltonian. The construction of these solutions reduces to an analysis of 
the solutions of an ~dgebraie system of equations of infinite dimensions, which follow from (4.3) when 0q/~ -- 0, 
0(pffOt = 0. It has been shown that solutions of this system for small-amplitude waves can be obtained in the form 
of asymptotic series. Knowing the value of the Hamiltonian at the initial given and extremal points one can draw 
conclusions regarding the possibility that the solution will reach a steady state from the initial state. 

Equations (4.4) were used in [3, 6] to investigate the non-linear interaction between wave packets on the free 
surface of a uniform fluid layer. 

We will consider the average Hamiltonian description of weakly modulated wave packets propagat- 
ing on a uniform background, for whieh 

1"1 = ~, "qm(t, lXX)expOltmX), tO/ = ~, tOm(t'Bx)exp(t~mX) 
m m 

v=(Lkmin)-I,¢l,  km = 1 2 (kin,kin), X = ( X I , x  2)  

(4.5) 

where ~t is the dispersion parameter and L is the characteristic scale of spatial modulation. We will assume 
, 0 0 0 that km are all pgssible linear combinations of certain specified wave vectors i~1, i/2, • • . ,  k~v and kmi. 

0 0 0 = min (] k' 1 [, [ k 2 [ , . . . ,  I k~¢l). The variables 1]m are the slowly varying amplitudes of waves with wave 
vectors ~ .  

Substituting (4.:5) into (2.5) we obtain 

H=Ho+H1 

H0 = S [)(l~x,t) dxldr2, H1 = ~, S ['~m.(P'x't)exp(ikm x)dxldx2 
F f m S f 

(4.6) 

We will introduce the following notation for the mean value of the arbitrary function O(x) 

xl+A x2+A 
I ...II I axldx2 ax2/A2t --- ,, --: , 
x I x 2 1 l 
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-1 A=kmin, l = 0 ,  1,2 .... 

Substituting expressions (4.5) into (2.5), multiplying the equations obtained by exp(-i/oc) and then 
calculating the mean values of both sides of the resulting equations, we obtain 

~ q ~  ~ 5 n o ,  ~q)~ _ 8Ho 
at ~ + Off.it), Ot 8("~'~)* + O(lat) (4.7) 

Further simplification of the system of equations (4.7) usually involves expanding the functions in 
powers of the small parameter e, representing the non-linearity of the problem and proportional to the 
amplitudes of the wave packets. The coefficients of different powers of the non-linear terms in the 
asymptotic expansions depend on the metric of the system of coordinates employed and the form of 
the known boundary of the liquid volume. 

We wish to thank A. G. Knlikovsldi and G. A. Alekseyev for their comments on the results of this 
paper. 
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